

Physiological responses of spearmint to radon exposure

Lígia Lopes^{a,b}, Mariana Vicente^{b,d}, Maria João Dias^{b,d}, Sonja Schreurs^{e,f,g} and Sandra Soares^{a,b,c}

^aDepartamento de Física, Universidade da Beira Interior (UBI), Covilhã, Portugal, ligia.lopes@ubi.pt; shsoares@ubi.pt; ^bLaboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal; ^cCentro de Matemática e Aplicações, UBI, Covilhã, Portugal; de Ciências da Saúde, UBI, Covilhã, Portugal; Hasselt University, Hasselt, Belgium, sonja.schreurs@uhasselt.be; fResearch Group NuTeC, Hasselt, Belgium; gResearch Institute CMK, Hasselt, Belgium.

Abstract

Radon, a naturally occurring radioactive gas, is the second leading cause of lung cancer among nonsmokers. Its effects on living organisms remain a critical area of study. This research investigates how high radon concentrations influence Mentha spicata L. (MS), commonly known as spearmint, a medicinal plant valued for its bioactive compounds. Plants in chamber A were exposed to radon, whilst those in chamber B served as controls. Using HPLC-DAD, we analysed 21 bioactive compounds, including phenols and flavonoids, to assess metabolic alterations. Results indicated that the total ratio of compound production/consumption in radon-exposed MS was nearly twice that of the controls, suggesting a stressinduced metabolic response. However, individual compounds exhibited varied trends—some increased proportionally with radon concentration, while others remained unchanged or declined. This may reflect radon-induced disruption of metabolic pathways or accelerated synthesis of protective metabolites. Given that these compounds contribute to plant defence and medicinal properties, radon exposure could influence the bioactivity of MS. Understanding how environmental stressors affect MS provides valuable insights into plant adaptation and potential impacts on human health. These findings contribute to research on radon's biological effects and strategies to mitigate its impact on ecosystems and medicinal plants.

Keywords: radon exposure, bioactive compounds, oxidative stress, medicinal plants, health

Acknowledgements: The authors L. Lopes and S. Soares received funding provided by RURALThings (DOI identifier https://doi.org/10.54499/UIDB/50008/2020) for publication and conference participation.